Large enhancements of magnetic anisotropy in oxide-free iron nanoparticles
نویسندگان
چکیده
Magnetic characterization of spherical, oxide-free, bcc iron nanoparticles synthesized with b-diketone surfactants has been performed. The results of this characterization, which included particles with diameters ranging between 2 and 5 nm show that the nanoparticles have an average anisotropy of 1.9 1070.3 10 J/m, which is more than an order of magnitude greater than the magnetocrystalline anisotropy of bulk iron. Despite their unusually large anisotropy, these particles can have saturation magnetizations of up to 210 A m/kg (slightly lower than bulk iron). High-energy X-ray diffraction data indicates that the Fe particles have a distorted bcc lattice, which could, at least in part, explain the magnetic behavior of these nanoparticles. Dipolar coupling between particles, while present, is weak and cannot account for the high anisotropy of these nanoparticles. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
A Review of Recent Advances in Iron Oxide Nanoparticles as a Magnetic Agent in Cancer Diagnosis and Treatment
Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties. Methods & Materials In this article, 49 articles related t...
متن کاملMagnetic iron oxide nanoparticles, Polyethylene glycol, Surfactant, Superparamagnetic, Chemical co-precipitation
In this study, magnetic iron oxide nanoparticles (Fe3O4) with the size range of 20-30 nm were prepared by the modified controlled chemical co-precipitation method from the solution of ferrous/ferric mixed salt-solution in alkaline medium. In this process polyethylene glycol was used as a surfactant to prevent the solution from agglomeration. The prepared magnetic nanoparticles were characterize...
متن کاملEvaluation of Antibacterial Properties of Magnetic Iron Oxide Nanoparticles Synthesized using Echinops Persicus Extract Coated with Chloramphenicol
Introduction: The use of plants is one of the most effective methods for the synthesis of nanoparticles based on green chemistry. The magnetic properties of nanoparticles let the attached drugs conduct by a magnetic field in the body. This study aimed to use the magnetic iron oxide nanoparticles synthesized via green chemistry as a carrier for the chloramphenicol drug delivery system. Materi...
متن کاملThe Effect of Magnetic Iron Oxide Nanoparticles on Mice Liver and Kidney
Background & Aims: In spite of frequent produce and use of magnetic nanoparticles in biological fields, there are few studies on their side effects, especially under in-vivo conditions. Method: In this research, the effect of the single-dose intraperitoneal injection of DMSA (dimercaptosuccinic acid) coated magnetic iron oxide nanoparticles (Fe3O4) in different doses (50, 100, 200 and 300 mg/kg...
متن کاملANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کامل